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A general representation of the resolvent in terms of a reduced distribution func- 
tion of a viscoelastic spectrum of the initial kernel is obtained. The method is 
illustrated using the widely known operators of viscoelasticity. Resolvents are 
constructed for the generalized fractional exponential kernel and the logarithm- 
ic kernels. 

Viscoelastic behavior of the real bodies (polymers in particular) can also be described 

[l - 33 by other equations containing the Volterra operator 

~*(...)=sP(r-?)(.:.)d~ 

0 

(0.1) 

where P (f) is the operator kernel. If 1 - xP*,-x < x ( m is a complete operator of 
viscoelasticity, then the operator 
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U - I@*)-’ = I + xn: (O-2) 

is the inverse operator and RX* is the resolvent operator for I’*, and the kernel RX (I) is 
the resolvent for P (1). General problems concerned with the invertibility of (0.2) are 
well worked out and the only question arising is that of the actual construction of the 

inverse operator. 

The feasibility of explicit construction of a resolvent from the given kernel is of ess- 
ential importance in the theory of viscoelasticity [3] and until recently [4-S] this was 

borne in mind when constructing the algebra of the Volterra operators (in connection 
with solutions of the boundary value problems). Although this was later [6-71 shown not 

to be necessary, nevertheless the problem of constructing a resolvent continues to be of 
interest 

Two classical methods of constructing the resolvent for the operator (0.1) exist. The 

symbolic method of Volterra, and the method of operational calculus. The first method 

is based on formal expansion of (0.2) into a series in the powers of the parameter x. We 

then have 
c..- 

(0.3) 

The above expansion is called the Neumann series for the operatorR.*.Here the operat- 
or Praised to the n-th power denotes a new operator whose kernel has been iterated 

(n - 1) times [S] 

P’“(.. .) = \ P,(1-r)(...)&, 

I 

Pn v - T) = 
s 

P,_, (1 - $) P (s - 7) dr (0.4) 

0 * 

Two kinds of difficulties arise in practice. Solution of the iterated integrals. and 

construction of the general term of (0.3). With few exceptions these difficulties cann- 

ot be overcome. The method of operational calculus is based on integral transformation 
of the operators P* andR, *Since in the present case i>e latter are convolution operators 

[9], we can denote their functional Laplace transforms by P”(p) andR,O(p) and transform 
the operator identity (0.2) into the functional identity 

If - XP” b-41 [l f & (P)l = 1 (6.5) 

from which we obtain 

R: (P) = 
P’ (PI 

i- XP” (p) 
?a=1 

(04 

The problem of constructing the resolvent is now reduced to that of inverting (0.6). 
However, even the well developed methods [9] often fail to cope with the problem of 
inversion. Moreover, cases exist when not only the problem of inversion, but also the 
problem of constructing the functional transform P”(p)of the operator in its explicit form 

is met with the difficulties mentioned above. 

1. The dintibutton fuactlon~ method. The class of the viscoelastic operators is cha- 
racterized by the fact that each operator can be put in one-to-one correspondence with 
a nonnegative spectrum (continuous or discrete) possessing a positive distribution function. 



Representation of the rerolvents of operators of viscoelasticity 703 

Depending on the meaning assigned to the operator, the parts of these spectra can be 
played by the relaxation spectrum, the delay spectrum [l - 33 and others. Assuming 
e. g. that x > Oin (0.2) we find that P* now becomes the relaxation operator and RX*, 

is the delay (creep) operator. The corresponding complete operators acting on the unit 
function will now become the relaxation function cp (t) and the creep function $X (f).The 
latter functions can also be written in terms of the viscoelastic spectra [l - 31 

m Rg 
V (I) :- [ II (y) c-l/* (ly, 11, y (0 = ,[ 0, (Y) (1 - e-“‘) dy (1.1) 

I 
Here fI (y) and Q I( (y) are the distribution functions of the relaxation time spectra and 
the creep time spectra. Since these functions cannot be determined experimentally, 

they are chiefly used to aid the theoretical interpretations of the properties of viscoelas- 

ticity DO - 123. All the same, they may be utilized in the problem of constructing 
the resolvents. 

By definition, the relaxation and creep functions are 

(1.2). 

Using the representation (1.1) we can obtain from (1.2) the following spectral represen- 
tations for the kernel and the resolvent: 

w (ID 

I’ (I) == + s II (A) e-“‘dk, R, (1) = + s qw (A) e-"dA (1.3) 
0 0 

The reduced distribution functions given here 

Ir (h) = h-‘H (h-l), qx (A) = A-IQ (A-‘), L = ‘r-’ (1.4) 

are constructed from the original ones by applying the inversion transformation. 
We note that (1.3) represents the particular case of the Bochner representation for the 

positive-definite functions p3]. The idea behind the distribution function method is 

that the problem of constructing the resolvent R, (t)from the given kernel P (tIcan be re- 
duced with the help of (1.3) to the problem of constructing the reduced dis&bution fun- 
ction qX (I). 

Let us consider the functional transforms P’(p)and Rx0 @)of the operators P+and R,* 
Using (1.3) we can easily show that 

Ia0 
p” (P) ‘=‘;i- mdd)*, 

s 
h(h) 

R: (PI = f 
s 

m 4x (1) dJ_ 

P+L 
0 .lO 

(1.5) 

By virtue of the integrability ofh (h)andq (&he functions P’(p)and R,“ (p) are well-def- 
ined and continuous over the whole plane of the complex variablep = a + ip,except at 
the points p = ,- a, a > 0 lying on the negative part of the real axis. Let us find the 

limit value of the functions at these points. For simplicity we shall consider the case 

when the point is approached along the direction parallel to the imaginary axis, e. g. 

lim PO (p) = rz P” (a f iP) 
p-c(I 

(1.6) 

The upper sign corresponds to the case when the real axis is approached from the upper 
semiplane, and the lower sign to the approach from the lower semiplane. We further 
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find a, 

5P(-a&@)= - 
s 

fi (Xl dL 
0 II 

We know that 

;: (5 
P 

- a)* + p” 
+!F & (A - a), 

+. 
6 (4 is the delta function, 

Therefore, as fi 2. 0 we obtain from (1.7) 

xP; (- a ) 
O” h(h) 

=! 1 x dh T inh (a) 
0 

Here P+? (- cr) and P_* (-a) denote the respective limits from the upper and the lower 
semiplane. From (1.9) it follows that rhe function pp (p) undergoes a jump 

AP”(-a)=P;(-a)- PL (- a) = - @xix% :(a) (1.10) 

during the passage across the negative part of the real axis. 

The magnitude of this jump is determined (with the accuracy of up to the multiplier 
term) by the distribution function h (u),This makes possible the use of the elementary 
methods to obtain h (a) from the given kernel 1’ (1) 

h(o)=-% APO (- a) (1.11) 

The relation (1.11) cap be simplified. Assuming 

I,;(-LI)=ReI’;(--)+iImP~(-aa) (1.12) 

we obtain from (1.9) 

Re PI (- a) = Re f_ (- a), Imp; (-a)=l-ImP:(-a) (1.13) 

Then 

API-@=-&2iImPL(-a) (1.14) 

and 

h (a) = ‘F: -$ImP~(--_a) fl .iS) 

The order of the upper and lower signs must be observed here. In exactly the same ma- 
nner we find,that 

O” P (Xl 
xl?“,, (-a) = s e dh T inq, (a), qx (a) = - % Im R”,_ (-- a) (1.16) 

0 

The improper integrals in (1.9) and (1.16) are used here in the sense of their principal 
values. 

The kernel P (t)and the resofvent R, (flare connected by a functional identity [8] 
which follows from the operator identity (5. ‘2). This implies that the reduced distzibu- 
tion functionsh (a)andq, (a)should also be connected by some definite relation. This 
relation can be obtained most simply from (5.5) after completing the limiting passage 

to the negative part of the real axis. Using the limiting values Pz (-a} andRO,* (-a} 
we obtain 

JIJO + JI - Jz + n%q, =I 0, -Jlqx - J& + q, --h -0 (1.17) 
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Here Jl and J; denote the improper integrals in (1.9) and (1.16) respectively. These 
equations make it possible to express one distribution function in the terms of another 

distribution function. For example, assume that qI and I, are unknown. Then they can 
be determined from the system 

(1'A)&+ n2hqx = Jl, --s+(i-Jl)q,=h (1.18) 

from which we have 

Writing (1.17) from L and Jl,we similarly obtain 

(1.19) 

(1.20) 

Relations (1.19) and (1.20) make it possible to use a known distribution function to ob- 
tain another distribution function, and they correspond exactly to the classical relations 
used for recalculating the relaxation and delay spectra [l. 101, 

We now have everything necessary for constructing a scheme of obtaining the resolv- 
em. We use the given kernel? (:)to obtain the reduced distribution function h (a). Dep- 

ending on the conditions used in definingY (&we can either use the relations (1.15). or 

(1.1) - (1.3). When (1.15) is used, the imaginary part ofP (p)ls computed on the neg- 
ative part of the real axis. The choice of sign is governed by the choice of the argument 
(X or- n)andP” (p)is understood to be the analytic continuation of the ordinary Laplace 

transform of the kernel I’ (f).over the whole complex p .-plane. The distribution function 
qu (a)is found from (1.19). Finally, (1.3) is used to obtain an expression for the resol- 
vent II, (t) 

All these operations are relatively simple and, what is more important. they are giv- 

en in the explicit form. This simplifies both the analytic construction of the resolvent 
and its numerical analysis. 

2. Application of the method. We shall illustrate the above method by applying it 
to the widely known viscoelastic operators, At the same time we shall construct certain 
resolver&, which have not up to now been obtained. We begin with the simplest case. 

1. Exponential operator. let 

p*(...)=3*(...) = je-Y(f-r)(...)d~ or P (1) = e-p’, P>O (2.2) 
0 

We find. that 

3” (P) = j& 9 
i 

Im -=6 (2.2) 

The latter means that the operator spectrum is discrete. From (1.3) follows 
m 

,-Pf = _!- 
x s 

11 (li) e-Al da, ir (A) = 4 (k - H) (2.4) 

0 

Here h c l&is a point of the spectrum. Further, 

Qx (a) = 
x6 (a - p) 

[I - x/p - a]’ f p*x*~Y (a - p) = 346 [a - (p - x)1 (2.5) 
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since (2.5), similarly to (1.8). can be represented by the following limit [l]: 

qx (a) - lim -!- 8 6 (& - a,) 
L-~O JI Mp(a)+el = IM’(a,)] ’ M (3.) = 0 

ilf (a) = I - *, I hf’ (a.) I = + , a,=Ib-x 

The resolvent has the form 

(2.6) 

(2.7) 

R,(I) ~1 76[L- (p-%x)] ema’d).=e’(~-“)’ 

0 

GQ 

It can easily be shown that the same result is obtained by direct inversion of the ope- 
rator 3* (- e s)., 

2. Generalized fractional exponential operator. Consider an oper- 
ator of the form 

1 
1 

J”(...)=E+(...) =r(~) 
s 

(L _ p ,u (f-*) (...)dr (O<vQi) (2.9) 
0 

We find 

1 6 *a<p 

E”(P) = 
(P +L9’ ’ 

Im E;(-a) = sin nv 
(e-p)” ’ a’p 

(2.10) 

which, together with (1.15). yield 

It (a) = 0 (a < Lb), h (a) = 1% y L 
(a - ~1” (a>N (2.11) 

i. e. additional multiplication of the Abel kernel by an exponential term corresponds 
to a direct displacement of the spectrum. We obtain q,t (a) with the help of the follo- 
wing known integral [ 141 

Then 

aD 

s 2 -ds= 

I 

no*” csc (1 - v) 2% (a > 0) 
t-i-0 

0 - no-'ctg(i- V)d (a <O) 

(2.12) 

co 

s 
?dr = %C09nv 

(2.13) 
b r+p--Q (a - I# 

Inserting (2.11) and (2.13) into (1.16) we obtain 

6, (a<p) 
‘I, (e) = (2.14) 

Xi% (3 - P)” sin nv [(a - p)2’ - 2% (a - p)’ cos nv + x*]-~, (a > p) 

The following expression for the resolvent follows from (1.3) 
m 

I{, (t) = F s (A, - /lye-h 
~ (A - Lb?’ - 2% (h - p)“cos nv + k 

db (2.15) 

Neumann type expansion is obtained when the integrand expression is written in the 
powers of x. Denoting X - p 5 p we find 

1 

i 

PI P2 
Mp)=2ni p-PI -PY 1 (2.16) 
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Here pr = NX”” and p, = xemfnv are the roots of the denominator. Taking this into acc- 
ount in (2.16). we obtain 

L13 
Y n 

q,(p)= f 5 x( 1 
sin n av, P<lXIUV 

?I=1 

qx (P) = +- 

.o 
x n 

r,f 1 ,Y sin n xv, P>lXIVQ 
ncl” 1 

and the integral 
cn m 

r 
b 

qX (p) espL dp =‘$ 2 x~~“‘-~I’ (1 -.nv) sin NW 
n=1 

Hence from (2.15) we obtain 

R, (t) = e-t”% (ys r) 

where 3, is a fractional-power exponential function c4.51. 

3. Bronskii-Slonimskii operator. The operator 

p* (. . .) = +) \ (t - r)“-‘e-p (f--r)Y (0. .) dr, 

b 
r>o 

(2.17) 

(2.16) 

@.i2) 

represents a further generalization of the exponential operator. The power term appea- 
ring in the exponential index seriously complicates the computations, and no unique 
analytic expression for the functional transform PQ (p) exists on the whole of the p-plane. 
Indeed, writing the exponential function in the form of a series we find 

(2.21) 

and the series converges for IpI >puy’ , i.e. outside the circle of radius pl’yY The analytic 
continuation of P” (p) into the interior of the circle is constructed proceeding from the 
following integral representation (by definition) 

(n 
1 

P’ (PI = m s t-1 e-P’ ,# dt 

0 

Expanding (2.22) into a series in the powers of P about the origin, we find 

P’(P) = -& i 
‘W n=o 

(-IT r (T$) (.L) r w nl 

(2.22) 

(2.23) 

with the region of convergence IpI < p Ifi. Thus the relations (2.21) and (2.22) give the 
analytic expression for PW (p) at all points of the p- plane except for those on the interv- 
al(--oo,-puYllying on the negative part of the real axis. From this in turn we find 

Im P,” (&a) = 0, O.< a < puy 

Im P,’ (-a) = - 
$i 

F(nT + v) sin (ny + v) I p 

( 1 

n, a > puy 
r(V)nl ci’. 

(2.21 j 
n=o 

Now according to (1.15) we have 
h (a) = 0, 0 < a < P1ly 

n, a>pvy, 6,=yn+v (2.25) 
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Further 

(2.27) 

We make use of the following standard integral 1141 

OD (2 + a)l-‘ s x_c dz.=w-” B(s-2,i)F 
- 1) A a-+-c 

2-_s, i; 3es; 

0 
n > 0, c > 4 Res>O 

where B is the beta function and F a hypergeometric function, Then from (2.27) we 
obtain 

J* = iYe, [n ctg 9,rt - (a / ~Vr)sn-lttn]. u > p”” (2.29) 

A n = B (en - 1.1) F (i,i -?, 0,; 2 - 0,; z), z = u-ip’/’ (2.30) 

Inserting (2.29) and (a. 30) into (2.26) we find, after some manipulations. 
m 

J(a) = xa-” 2 [( 4)” r (?;;; ;“” zyn - m.$ C,,P] 

rcro 
(2.31) 

The coefficients C,, are obtained by expanding the second term of (2.29) into a power 
series in z -This is done wit& the help of a representation for a hy~rgeome~c fiction 

f14]. As the result we have 

A,= (2.32) 

On the basis of relations {Z. 25), (2.29) and (1.19) we obtain the following represent- 
ation for the resoiventr 

The Neumann series for R,(f) follows from (2.33) by expanding the latter into a para- 
metric power series in x. This boils down to expanding into a series a reciprocal of a 
quadratic trinomial As this is quite tedious, we shall not go into it, We only note 
that by settingy = i in (2.31) we obtain, as we would expect, the resolvent (2.19). 
Indeed. in this case we firstly have 

and secondly 

c ,=Isinvn v(v+f).*-fv+k--1) =o 
(Vfk-?E----I)til 

(2.34) 

li=n 

n=o 
ii 

I 

(_j)nr(n+V)sin(n+v)n 
n 

r(vfnl ( ) CLn__sinvn ~ v(V~l)..~(V+~-i) ~ = 
a nl 

n=O 
( ) 
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= sin vz 

l--ILIe 

(2.35) 

Inserting this into (2.33) we obtain (2.15) and after this, (2.19). Here we find that 
(2.34) represents a very nontrivial statement. To prove its validity we must use the 
following intermediate equation 

_ j_ + v (v + 1) + v (v + 1) (V-C 2) +. . , I 
k-v k kVc+i) k(k-l-l)(k+W 

(2.3U) 

which can be extracted from the integral representation for a hypergeometric function 

Cl42 
The asymptotic properties of the approximate expressions for the resolvent etc. obt- 

ained earlier [ 15 - 171 are not considered here, nor is their accuracy analysed. 

4. Boltzmann operator. Boltzmann, as well as a number of other investigat- 

ors [3]. have already noted that the deformation caused by a constant stress varies with 

time in a logarithmic manner. Recent precision measurements performed on a number 

of polymers [18.19] confirm this point of view, particularly for the experiments of short 

duration. However the use of the logarithmic law in the computations was always hamp- 

ered primarily by the lack of a suitably developed mathematical apparatus, and partic- 
ularly by the lack of a resolvent. Attempts to obtain the latter by traditional methods 
have always failed just as in the case of the Bronskii-Slonimskii kernel 1173. 

Let us first obtain the properties of the spectrum of the logarithmic deformation law. 
Assuming in (1.3) 

q(h) = fJ0 = const, O<A,<w (2.37) 

R(f)=qol*, \I, (1) = 90 In t + C 

i.e. a formal correspondence exists between the Boltzmann operator and a constant re- 
duced delay spectrum. But it follows from (2.38) that neither the operator itself nor the 
logarithmic law, have any physical meaning when the whole time interval (0, .w)is taken 

into account, because of the singularity near the origin. This is also reflected-in the 
fact that no relaxation spectrum exists for the chosen delay spectrum. This can easily 
be seen to follow from (1.20). as the improper integral appearing there diverges. There 
are two ways of overcoming this deficiency. The first one is based on altering the form 

of the Boltzmann operator. let us assume f3] 

N (I)““E -!- * 
x ‘+b ta70 

From (1.3) it follows that (2.38) is equivalent to the expression for the constant spect- 

rum multiplied by a decaying exponential function 

(I (A) = Co+* (2.40) 

Now 

s Cm 4 04 & 

A-a 
= - Q (a) Ei (ato) (2.41) 

0 
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where]? i (r)is an integral exponential function [14]. 
ent is obtained from (1.3), (1.20) (2.39) and (2.40) 

w 

The representation for the resolv- 

From this it follows that the time enters the expression for P (1) just as it did in (2.38). 
except that here it appears in the form of the sum 1 t_ 1,. The Neumann series for P (t) 

is written in this case in the powers of the parameter qo. 
The second method is based on replacing the constant spectrum with a “block” spect- 

rum [l,lO]. Let 

‘I (k) = ‘70 (U < h. < ho); q (A) = 9 (A > Lo) (3.43) 

We choose 1, = l/l,. From (1.3) we find 

R (1) zz go%-rl-1 (1 - e-I”‘) (3.44) 

When i, - 0 the kernel (2.44) tends the Boltzmann kernel (2.38). Omitting the interm- 
ediate calculations we give the resolvent for (2.44) 

1’ (t) = p~fo-~ ( ([ 1 - qo In @‘-l- l)]” + n?qnZ]-* exp qdz 

z 

(2.45) 

As before, the analysis of the resolvents (2.41) and (2.45) obtained is left aside, 
Thus the proposed method of representing the resolvents opens new possibilities for a 

more flexible analytic description of the viscoelastic phenomena at both stages, this of 
studying the properties themselves and that of solving the boundary value problems. 
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ON CERTAIN EXACT SOLUTIONS OF THE FOURIER EQUATION FOR REGIONS 

VARYING WITH TIME 

PMM Vol. 35, No.4. 1971. pp. 759-760 
G. A. GRINBERG and V. A. KOSS 

(Leningrad) 
(Received January 11, 1971) 

1. Let us use the method given in Cl] to solve the first boundary value problem for 
the three-dimensional Fourier equation in Cartesian coordinates 
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defined on the domain bounded by coordinate planes moving in accordance with some 
rulesR@) (f)andH(‘) (t)so that 1 t 
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where i denote the coordinate axis number. Assume that the functions R?) and II!‘) 
possess continuous first and second order derivatives. We then obtain 
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